ua nt - p h / 01 04 09 1 v 2 1 9 A pr 2 00 1 Quantum mechanics gives stability to a Nash equilibrium

نویسندگان

  • A. Iqbal
  • A. H. Toor
چکیده

We consider a slightly modified version of the Rock-Scissors-Paper (RSP) game from the point of view of evolutionary stability. In its classical version the game has a mixed Nash equilibrium (NE) not stable against mutants. We find a quantized version of the RSP game for which the classical mixed NE becomes stable as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ua nt - p h / 01 04 09 1 v 3 2 6 A ug 2 00 1 Quantum mechanics gives stability to a Nash equilibrium

We consider a slightly modified version of the Rock-Scissors-Paper (RSP) game from the point of view of evolutionary stability. In its classical version the game has a mixed Nash equilibrium (NE) not stable against mutants. We find a quantized version of the RSP game for which the classical mixed NE becomes stable.

متن کامل

04 09 1 v 1 1 8 A pr 2 00 1 Quantum mechanics gives stability to a Nash equilibrium

We consider a slightly modified version of the Rock-Scissors-Paper (RSP) game from the point of view of evolutionary stability. In its classical version the game has a mixed Nash equilibrium (NE) not stable against mutants. We find a quantized version of the RSP game for which the classical mixed NE becomes stable as well.

متن کامل

ar X iv : q ua nt - p h / 01 01 10 6 v 2 4 F eb 2 00 1 Entanglement and Dynamic Stability of Nash Equilibrium in a Symmetric Quantum Game

We present an example of a symmetric quantum game for which a dynamically stable Nash equilibrium becomes unstable when the initial state used to play the quantum game is changed to 'entangled' from 'unentan-gled'. The game is played between two players via the proposed scheme of applying 'identity' and 'Pauli spin flip' operators on the initial state with classical probabilities.

متن کامل

ua nt - p h / 01 06 05 6 v 1 9 J un 2 00 1 Evolutionary stability of mixed Nash equilibrium in quantized symmetric bi - matrix

We find the requirements on change of evolutionary stability of a mixed Nash equilibrium (NE) when a game changes its form from classical to quantum or conversely. We consider a quantized two players two strategies symmetric game. We find that an entangled state in a more general form is needed to affect evolutionary stability of a mixed NE than needed, with similar purpose, for a pure NE.

متن کامل

ua nt - p h / 01 04 04 3 v 1 9 A pr 2 00 1 Moller operators and Lippmann - Schwinger equations for step - like potentials

The Moller operators and the asociated Lippman-Schwinger equations obtained from different partitionings of the Hamiltonian for a step-like potential barrier are worked out, compared and related.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008